Callenges for MSSM Higgs Searches with CP Violation

Marcela Carena Fermilab

CP Studies and non-Standard Higgs Physics 3rd Meeting, SLAC, March 2005

CP Violation in the MSSM

- In low energy SUSY, there are extra CP-violating phases beyond the CKM ones, associated with complex SUSY breaking parameters
- One of the most important consequences of CP-violation is its possible impact on the explanation of the matter-antimatter asymmetry. (see C. Wagner's talk)

Electroweak baryogenesis may be realized even in the simplest SUSY extension of the SM, but demands new sources of CP-violation associated with the third generation sector and/or the gaugino-Higgsino sector.

- These CP-violating phases may induce effects on observables such as new contributions to the e.d.m. of the electron and the neutron.
 - However, effects on observables are small in large regions of parameter space
- In the Higgs sector at tree-level, all CP-violating phases, if present, may be absorved into a redefinition of the fields.
- CP-violation in the Higgs sector appears at the loop-level, associated with third generation scalars and/or the gaugino/Higgsino sector, but can still have important consequences for Higgs physics

MSSM Higgs sector at Tree-Level

 H_1, H_2 doublets \Longrightarrow 2 CP-even Higgs h, H 1 CP-odd state A 2 charged

Higgs masses and couplings given in terms of two parameters:

$$m_A$$
 and $\tan \beta \equiv v_2/v_1$ mixing angle $\alpha \Longrightarrow \cos^2(\beta - \alpha) = \frac{m_h^2 (m_Z^2 - m_h^2)}{m_A^2 (m_H^2 - m_h^2)}$

Couplings to gauge bosons and fermions (norm. to SM)

hZZ, hWW, ZHA, WH
$$^{\pm}$$
H $\longrightarrow \sin(\beta - \alpha)$
HZZ, HWW, ZhA, WH $^{\pm}$ h $\longrightarrow \cos(\beta - \alpha)$

(h,H,A)
$$u\bar{u} \longrightarrow \cos \alpha / \sin \beta$$
, $\sin \alpha / \sin \beta$, $1/\tan \beta$
(h,H,A) $d\bar{d}/l^+l^- \longrightarrow -\sin \alpha / \cos \beta$, $\cos \alpha / \cos \beta$, $\tan \beta$

If $m_A \gg M_Z \to$ decoupling limit

- $\cos(\beta \alpha) = 0$ up to correc. $\mathcal{O}(m_Z^2/m_A^2)$
- lightest Higgs has SM-like couplings and mass $m_h^2 \simeq m_Z^2 \cos^2 2\beta$
- other Higgs bosons: heavy and roughly degenerate $m_A \simeq m_H \simeq m_H^{\pm}$ up to correc. $\mathcal{O}(m_Z^2/m_A^2)$

CP violation in the Higgs Sector

- at tree level \improx MSSM Higgs potential invariant under CP
- After radiative corrections: CP violation induced through loop effects via 3. generation sfermion and gaugino mass parameters
- Many possible relevant phases to Higgs sector $m_{\tilde{g}}$ (one phase if Univ. gaugino masses) A_f μ and m_{12}^2

Due to U(1) symm.of the conformal inv. sector:

 \rightarrow one can redefine fields and absorb two phases

rephasing inv. combinations

if
$$\text{Im } ((m_{12}^2)^* A_f \mu) \neq 0$$
 and/or $\text{Im } ((m_{12}^2)^* m_{\tilde{g}} \mu) \neq 0$

 \Longrightarrow CP violating effects will be present in the MSSM in practice, take m_{12}^2 and μ real and leave phases in A_f and $m_{\tilde{g}}$

Higgs Potential → Quantum Corrections

Minimization should be performed with respect to real and imaginary parts of Higgs fluctuations $H_1^0 = \phi_1 + iA_1$ $H_2^0 = \phi_2 + iA_2$

Performing a rotation: $A_1, A_2 \implies A, G^0$ (Goldstone)

Main effect of CP-Violation is the mixing of the three neutral Higgs bosons

$$\begin{pmatrix} \mathbf{A} \\ \mathbf{\Phi}_1 \\ \mathbf{\Phi}_2 \end{pmatrix} = O \begin{pmatrix} \mathbf{H}_1 \\ \mathbf{H}_2 \\ \mathbf{H}_3 \end{pmatrix}$$

In the base (A, Φ_1, Φ_2)

$$M_N^2 = \begin{bmatrix} \mathbf{m_A^2} & (\mathbf{M_{SP}^2})^T \\ \mathbf{M_{SP}^2} & \mathbf{M_{SS}^2} \end{bmatrix}$$

 $\boldsymbol{M}_{N}^{2} = \begin{bmatrix} \mathbf{m}_{A}^{2} & (\mathbf{M}_{SP}^{2})^{\mathrm{T}} \\ \mathbf{M}_{SP}^{2} & \mathbf{M}_{SS}^{2} \end{bmatrix} \quad \begin{array}{l} \boldsymbol{M}_{SS}^{2} \text{ is similar to the mass matrix in} \\ \text{the CP conserving case, and} \\ \boldsymbol{M}_{A}^{2} \text{ is the mass of the would-be CP-odd Higgs.} \end{array}$

 M_{SP}^2 gives the mixing between would-be CP-odd and CP-even sates, predominantly governed by stop induced loop effects

$$\mathbf{M}_{\mathrm{SP}}^{2} \propto \frac{\mathbf{m}_{\mathrm{t}}^{4}}{16 \, \pi^{2} \, \mathrm{v}^{2}} \, \mathrm{Im} \left(\frac{\mu \, \mathbf{A}_{\mathrm{t}}}{\mathbf{M}_{\mathrm{s}}^{2}} \right)$$

Gluino phase relevant at two-loop level. Guagino effects may be enhanced for large tan beta

Comments on Higgs Boson Mixing

- m_A^2 no longer a physical parameter, but the charged Higgs mass M_{H^\pm} can be used as a physical parameter, together with M_S , $|\mu|$, $|A_t|$, $\arg(A_t)$ and $\arg(M_{\tilde{g}})$
- Elements of matrix O are similar to $\cos \alpha$ and $\sin \alpha$ in the CP-conserving case. But third row and column are zero in the non-diagonal elements in such a case.
- Three neutral Higgs bosons can now couple to the vector bosons in a way similar to the SM Higgs.
- Similar to the decoupling limit in the CP-conserving case, for large values
 of the charged Higgs mass, light Higgs boson with Standard Model properties.

Interaction Lagrangian of W,Z bosons with mixtures of CP even and CP odd Higgs bosons

$$\begin{array}{rcl} g_{H_{i}VV} &=& \cos\beta\,\mathcal{O}_{1i} + \sin\beta\,\mathcal{O}_{2i} \\ g_{H_{i}H_{j}Z} &=& \mathcal{O}_{3i}\left(\cos\beta\,\mathcal{O}_{2j} - \sin\beta\,\mathcal{O}_{1j}\right) - \mathcal{O}_{3j}\left(\cos\beta\,\mathcal{O}_{2i} - \sin\beta\,\mathcal{O}_{1i}\right) \\ g_{H_{i}H-W+} &=& \cos\beta\,\mathcal{O}_{2i} - \sin\beta\,\mathcal{O}_{1i} + i\mathcal{O}_{3i} \\ \mathcal{O}_{ij} \longrightarrow \text{analogous to } \sin(\beta-\alpha) \,\,\&\,\cos(\beta-\alpha) \end{array}$$

 \rightarrow All couplings as a function of two: $g_{\rm H_k VV} = \mathcal{E}_{ijk} g_{\rm H_i H_i Z}$

and sum rules:
$$\sum_{i=1}^{3} g_{H_i ZZ}^2 = 1$$
 $\sum_{i=1}^{3} g_{H_i ZZ}^2 m_{H_i}^2 = m_{H_1}^{2,\text{max}} \lesssim 135 \text{ GeV}$

(equiv. to CP-conserv. case)

upper bound remains the same

Decoupling limit: $m_{H^+} \gg M_Z$

- Effective mixing between the lightest Higgs and the heavy ones is zero
- → H₁ is SM-like
- Mixing in the heavy sector still relevant!

Yukawa Couplings: CP violating vertex effects

$$-\mathcal{L}_{\phi^0\bar{b}b}^{\text{eff}} = (h_b + \delta h_b) \,\phi_1^{0*} \,\bar{b}_R b_L + \Delta h_b \,\phi_2^{0*} \,\bar{b}_R b_L + \text{h.c.}$$

coupling Δh_b generated by SUSY breaking effects

$$egin{array}{l} rac{\delta h_b}{h_b} & \sim & rac{2lpha_s}{3\pi} rac{m_{ar{g}}^* A_b}{\max{(Q_b^2,|m_{ar{g}}|^2)}} - rac{|h_t|^2}{16\pi^2} rac{|\mu|^2}{\max{(Q_t^2,|\mu|^2)}} \ rac{\Delta h_b}{h_b} & \sim & rac{2lpha_s}{3\pi} rac{m_{ar{g}}^* \mu^*}{\max{(Q_b^2,|m_{ar{g}}|^2)}} + rac{|h_t|^2}{16\pi^2} rac{A_t^* \mu^*}{\max{(Q_t^2,|\mu|^2)}} \ \end{array}$$

•The one loop effects to the Yukawa couplings introduce CP-violating effects which are independent of the Higgs mixing

the phase of the superfield b_R is real and positive:

$$h_b = \frac{g_w m_b}{\sqrt{2} M_W \cos \beta \left[1 + \frac{\delta h_b}{h_b} + \left(\frac{\Delta h_b}{h_b} \right) \tan \beta \right]}$$

Higgs boson-quark Lagrangian

• taking into account both CP-violating self-energy and vertex effects (similar vertex effects in the up quark sector, but no tan β enhancement)

$$L_{Hf\bar{f}} = -\sum_{i=1}^{3} H_{i} [(g_{W} m_{d} / 2M_{W}) \overline{d} (g_{H_{i}dd}^{S} + g_{H_{i}dd}^{P} \gamma_{5}) d + (g_{W} m_{u} / 2M_{W}) \overline{u} (g_{H_{i}uu}^{S} + g_{H_{i}uu}^{P} \gamma_{5}) u]$$

with:

$$g_{H_i dd}^{S} = \frac{1}{h_b + \delta h_b + \Delta h_b \tan \beta} \left\{ \operatorname{Re}(h_b + \delta h_b) \frac{O_{1i}}{\cos \beta} + \operatorname{Re}(\Delta h_b) \frac{O_{2i}}{\cos \beta} - \left[\operatorname{Im}(h_b + \delta h_b) \tan \beta - \operatorname{Im}(\Delta h_b) \right] O_{i3} \right\}$$

$$g_{H_i dd}^{P} = \frac{1}{h_b + \delta h_b + \Delta h_b \tan \beta} \left\{ \left[\operatorname{Re}(\Delta h_b) - \operatorname{Re}(h_b + \delta h_b) \tan \beta \right] O_{31} \right\}$$

$$-\operatorname{Im}(h_b + \delta h_b) \frac{O_{1i}}{\cos \beta} - \operatorname{Im}(\Delta h_b) \frac{O_{2i}}{\cos \beta}$$

- Decoupling limit: $M_{H^{\pm}} \gg M_Z$

CP violation effects in the Higgs-fermion couplings

$$O_{11} \to \cos \beta$$
 $O_{21} \to \sin \beta$ $O_{31} \to 0$

hence:

 H₁bb and H₁uu pseudoscalar couplings tend to zero while their scalar couplings tend to SM-like

with the bottom mass: $h_b = \frac{g_w m_b}{\sqrt{2} M_W \cos \beta \left[1 + \frac{\delta h_b}{h_b} + (\frac{\Delta h_b}{h_b}) \tan \beta \right]}$

- Heaviest Higgs Scalar and Pseudoscalar couplings to up and down quarks do not vanish
- non decoupling of CP-violating vertex effects as well as self energy ones

H₁bb Scalar and Pseudoscalar couplings as a function of phases

- Analyze behaviour in term of CP-even quantities: BR's and CP- odd quatinties: Asymmetries
- Effects depend both on the dominant squark sector phases, as well as on the subdominant gaugino phases, affecting the vertex corrections.
- Cases with gluino mass phase zero (solid lines) and 90 degrees (dashed lines) shown in figures: stronger effects of gluino phase for larger tanb

CP-Violating phases affect both masses and couplings in relevant ways.

Strong suppresion of H₁bb Coupling depending on the gluino phase

 Suppression of Higgs coupling to bb for a Higgs with SM-like couplings to vector bosons

Region of parameter space consistent with electroweak Baryogenesis

Searches at LEP excluded a mass up to about 112 GeV in the flavour independent analysis

CP-Violating Higgs bosons at LEP: challenging scenarios

$$e^+e^- o H_i Z$$
 and $e^+e^- o H_i H_j$
 $\frac{\text{CPX Scenario}}{M_{SUSY}}$:
 $M_{SUSY} = 0.5, 1 \text{ TeV}$
 $\mu = 4 M_{SUSY}$
 $m_{\tilde{g}} = 1 \text{ TeV}$
 $|A_t| = |A_b| = 2M_{SUSY}$

interesting example:

$$egin{aligned} & rg(A_{t,b}) = 90^o, \ rg(m_{ ilde{m{g}}}) = 90^o \ m_{H\pm} \simeq 150 \ {
m GeV} \ & \longrightarrow m_{H_1} \simeq 70 \ {
m GeV} \ m_{H_2} \simeq 105 \ {
m GeV} \end{aligned}$$

- • M_{H_1} very small but $g_{h_1ZZ} \to 0$,
- $ullet M_{H_1} + M_{H_2}$ too heavy for the given value of the $g_{H_1H_2Z}$ coupling
- M_{H_2} just at the edge of LEP reach

 H_1 decouples from the Z and H_2 and H_3 may be out of kinematic reach.

M.C., Ellis, Pilaftsis, Wagner

Another interesting example within the CPX Scenario:

(1)
$$m_{H^{\pm}} = 160 \,\text{GeV} \, \tan \beta = 4$$

(2)
$$m_{H^{\pm}} = 150 \,\text{GeV} \, \tan \beta = 5$$

(3)
$$m_{H^{\pm}} = 140 \,\text{GeV} \, \tan \beta = 6$$

$$arg(A_{t,b}) = 110^{\circ} \text{ and case (3)}$$

$$\Rightarrow m_{H_2} = 112 \,\text{GeV}$$
 and $m_{H_1} = 40 \,\text{GeV}$

g_{H_1ZZ} too small to detect H_1

H₂ is produced via Higgs - strahlung but, it has sizeable decay rate into H₁H₁

New search mode opens up:

$$ZH_2 \rightarrow ZH_1H_1 \rightarrow Zb\overline{b}b\overline{b}$$

M.C., Ellis, Pilaftsis, Wagner

CPX scenario: no lower bound on M_{H1} from LEP!

- H₁ decouples from the Z and H₂ and H₃ may be out of kinematic reach.
- or reduced couplings of H_i to Z and extended regions were H₂ decays
 H₁H₁ and the H₁'s decay into b's

 m_{H2} < 130 GeV \Rightarrow major role of CP-violating effects Example: m_{H1} = 40-45GeV, m_{H2} = 110 GeV, $\tan \beta = 4-7$ Not excluded

No Universal lower limit on mH₁ but $\tan \beta > 2.6 - 2.9$ (mt dep.)

Impact of the top quark mass on the results

main effect for $\tan \beta = 4-10$ is due to opening of H_1Z , H_2Z channels as well as H_1H_2

CP-Violating Higgs bosons at the Tevatron

Example:

- MH1 about 90 GeV but out of the reach of LEP.
- All other channels kinematically unaccessible
- MH1 also hopeless at the Tevatron due to reduced W/Z H1 coupling
- H1 and H2 masses have little variation with phase of At, but couplings to gauge bosons vary importantly

The Tevatron has a chance of having a first glance at H2.

Most crucial however, explore similar regions but for $M_{\rm H_2} \ge 2 M_{\rm H_1}$

M.C., Ellis, Pilaftsis, Wagner

Approximate LEP exclusion and Tevatron (3σ / 5 fb⁻¹) and LHC (5σ discovery) limits in the m_{H_1} – tan β plane for CPX scenarios with different phases (arg $M_{\tilde{q}}$) = arg($A_{t,b}$)

M.C., Ellis, Mrenna, Pilaftsis, Wagner

Similar plot as above but showing different channels separately and in the $\tan \beta - m_{H^+}$ plane

- The Tevatron could see a 3 σ hint with
 5 fb⁻¹ in a sizeable area of parameter space
 - If $arg(M\tilde{g})=0$ instead, stronger suppression of $BR(H_{1,2}) \to b\bar{b}$ and both upper channels less competitive
 - vector boson fusion Higgs production with subsequent decay into taus still crucial channel at first years of LHC!

M.C. Ellis, Mrenna, Pilaftsis, Wagner

Can LHC discover the SM-like Higgs in the MSSM with explicit CP violation?

CPX scenario

 $m_{H_1} < 70 \,\mathrm{GeV}$

 m_{H_2} :105 to 120 GeV

 m_{H_3} :140 to 180 GeV

H₂/H₃ channels: VBF and ttHi

Present limitations:

VBF only for mass > 110 GeV No study for H₁ below 70 GeV

Encourage the study of gg → H₂, tt̄H₂, W/Z H₂ and WW/ZZ H₂
with subsequent decay H₂ → H₁H₁, using the extra leptons from W/Z's.
Also tt̄ → WbH[±]b with H[±] → WH₁ → Wbb̄

Looking for $H_2 \rightarrow H_1 H_1$

- Standard signatures not sufficient to probe the presence of a SM-like Higgs bosons decaying into lighter Higgs states.
- Lighter states have weak couplings to the weak gauge bosons, but large couplings to third generation down quarks and leptons.
- Possibility of looking for two taus and two bottoms (jets) signatures at LHC in the weak boson fusion production channel of two CP-odd like Higgs bosons. (J. Gunion et al. with 300 fb-1 at the LHC, NMSSM)
- A detailed experimental simulation should be performed to test this possibility.

CPsuperH

 Code to compute Higgs spectrum, couplings and decay modes in the presence of CP-violation

Lee, Pilaftsis, M.C., Choi, Drees, Ellis, Lee, Wagner.'03

- CP-conserving case: Set phases to zero. Similar to HDECAY, but with the advantage that charged and neutral sector treated with same rate of accuracy.
- Combines calculation of masses and mixings by M.C., Ellis,
 Pilaftsis, Wagner. with analysis of decays by Choi, Drees, Hagiwara,
 Lee and Song.
- Available at

http://theory.ph.man.ac.uk/~jslee/CPsuperH.html

Conclusions

- Low energy supersymmetry has an important impact on Higgs physics.
- It leads to definite predictions to the Higgs boson couplings to fermions and gauge bosons.
- Such couplings, however, are affected by radiative corrections induced by supersymmetric particle loops.
- CP-violation in the Higgs sector is well motivated and should be studied in detail. It affects the searches for Higgs bosons at hadron and lepton colliders in an important way.
- At a minimum, it stresses the relevance of studying non-standard Higgs boson production and decay channels at lepton and hadron colliders.